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Abstract. Jenike’s radial solution, widely used in the design of materials-handling equipment,
is a similarity solution of steady-state continuum equations for the flow under gravity of granular
material through an infinite, right-circular cone. In this paper we study how the geometry of the
hopper influences this solution. Using perturbation theory, we compute a first-order correction to
the (steady-state) velocity resulting from a small change in hopper geometry, either distortion of the
cross section or tilting away from vertical. Unlike for the Jenike solution, all three components of the
correction velocity are nonzero: i.e., there is secondary circulation in the perturbed flow. We show
that, depending on hopper and material parameters, the perturbed velocity depends sensitively, to an
astonishing degree, on hopper geometry. These results suggest that, even in a vertical conical hopper,
solutions with circulation may bifurcate from the Jenike solution, a phenomenon to be investigated
in a future paper.
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1. Introduction. In manufacturing industries, raw materials are stored in gran-
ular form in a silo, and when needed, they are expected to flow out of the silo under
gravity through a hopper. Problems in the discharge process are frequent and expen-
sive, see e.g. [9]. As demonstrated by a Rand Corporation study [10], these problems
are symptomatic of our poor understanding of the behavior of granular materials1.

Jenike’s radial solution is a central component of silo design. Despite its impor-
tance, this solution is subject to many severe restrictions:

1. Granular material is modeled as a continuum, with an ad hoc constitutive law.
2. The flow is assumed to be steady.
3. The flow domain, a mathematical idealization, is an infinite cone, given in

spherical polar coordinates by the formula

{(r, θ, φ) : 0 < r < ∞, 0 ≤ θ < θw}, (θw = constant).

4. Only similarity solutions are considered.
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1The study compared the design output and the actual output of a total of 60 manufacturing
plants in various industries, 22 that were based primarily on liquids-processing technology and 38 on
solids-processing technology. On average, the liquids-processing plants produced at 84% of design
capacity while the solids-processing plants produced at only 63% of design capacity. To quote Merrow,
“In economic terms, the difference between 63% of design and 84% is very large. It implies a capital
cost per unit of output about one-third higher for the solids-processing plants, on the basis of poor
performance alone. In addition, poor performance is inevitably associated with higher operating and
maintenance costs per unit of product.” Moreover, the standard deviation of the solids-processing
data set was much greater, indicative of our difficulties in predicting the behavior of granular solids.
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In this paper we relax restrictions 3 and 4 partly. Specifically, we generalize the
domain to an infinite pyramidal hopper described by the inequality

0 ≤ θ < θw + ε cos mφ,(1.1)

where ε is a small parameter and m is a positive integer. Assuming a perturbation
series

v(0) + εv(1) + . . .

for the flow velocity in the domain (1.1), where v(0) is Jenike’s solution, we derive
a linear PDE for the first-order correction v(1). The r-dependence of v(1) still has
similarity form, and the φ-dependence may be handled by separation of variables. In
this way we reduce solving the PDE for v(1) to solving a two-point boundary problem
on the interval 0 < θ < θw.

In Jenike’s solution, only the radial component v
(0)
r of the velocity is nonzero. By

contrast, all three components of the correction velocity v(1) are nonzero. In other
words, distortion of the conical domain leads to secondary circulation. For example, in
Figure 5.1 below, the flow in the θ, φ-directions is shown in two cases which correspond
to a circular hopper that is tilted slightly to the right, and in Figure 5.2, in two cases
which correspond to a slightly distorted vertical hopper.

The boundary problem for v(1) contains three significant parameters: the angle
of internal friction δ, the coefficient of wall friction µw, and the opening angle of the
hopper θw. (The subscript w is mnemonic for wall.) Surprising behavior occurs when
these parameters are varied. In the first place, the direction of circulation may reverse
itself. This is illustrated for instance by Figure 5.2: δ and θw are the same for both
parts of the figure, but µw is larger in the bottom part. As illustrated in Figure 5.1,
the topology of the circulation may change as µw varies. Most surprising of all, the
circulation does not reverse direction by passing smoothly through zero; rather, as
illustrated by the graph of v

(1)
φ in Figure 5.3, the circulation suffers a “1/x-blowup”

as the parameters pass through the critical values! (Of course in deriving the PDE for
v(1), it was assumed that v(1) was much smaller than v(0). When this PDE predicts
that v(1) is large, the derivation fails. Thus, the blowup of v(1) does not mean that the
solution of the full nonlinear problem diverges, but it does mean that the full solution
does not depend smoothly on parameters. In other words, the nonlinear solution may
be extremely sensitive to perturbations.)

The outline of the paper is as follows. In Section 2, the governing equations
are recalled together with Jenike’s construction of similarity solutions in conical do-
mains. For nonaxisymmetric domains of the type (1.1), the problem is then linearized
about Jenike’s solution in Section 3. The resulting system is discretized in Section 4.
Numerical results and discussion are offered in Section 5.

2. The model.

2.1. Governing equations and boundary conditions. The unknowns are
the 3-component velocity vector v, the 3× 3 symmetric stress tensor T , and a scalar
plasticity coefficient λ. (The density ρ is a constant.) In total, there are 3+6+1=10
unknown functions. In writing the equations for these variables, we need the strain
rate tensor V = −1/2(∇v+∇vT ) and the deviatoric part of the stress tensor dev T =
T − 1

3 trT I. Note the sign convention: V measures the compression rate of the
material; analogously, positive eigenvalues of T correspond to compressive stresses.
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This sign convention reflects the fact that granular materials disintegrate under tensile
stresses.

Following [12], we require that these variables satisfy

∇ · T = ρ g,(2.1)
V = λ dev T,(2.2)

| dev T |2 = 2s2(trT /3)2,(2.3)

where g is the (vector) acceleration of gravity, | · | denotes the Frobenius norm

|T |2 =
3∑

i,j=1

T 2
ij = tr T 2

(the latter equality only for symmetric tensors) and s = sin δ, with δ being the angle
of internal friction of the material under consideration (see [11]). Equation (2.1)
expresses force balance: i.e., Newton’s second law with inertia neglected because the
flow is assumed slow; it is equivalent to three scalar equations. Equations (2.2) and
(2.3) are constitutive laws, the alignment condition and the von Mises yield condition,
respectively; they are equivalent to six and to one scalar equations, respectively. Thus
(2.1–2.3) is a determined system, 10 equations for 10 unknowns. Since (2.3) contains
no derivatives, this system has a differential-algebraic character. Taking the trace of
(2.2), we see that div v = −trV = 0; thus, incompressibility is part of the constitutive
assumptions. Incidentally, for a solution to be physical, the function λ in (2.2) must
satisfy λ ≥ 0 everywhere; otherwise friction would be adding energy to the system
rather than dissipating it. In fact, we want λ to be strictly positive since one of
the assumptions underlying the derivation of (2.1–2.3) is that material is actually
deforming.

We seek solutions of (2.1–2.3) in a pyramidal domain, expressed in spherical polar
coordinates as

Ω = {(r, θ, φ) : 0 ≤ θ < C(φ)},(2.4)

where C is a given smooth 2π-periodic function. Such a domain represents a mathe-
matical idealization of a converging hopper, in general a nonaxisymmetric one.

On the boundary ∂Ω = {(r, C(φ), φ)}, wall impenetrability imposes one boundary
condition on the velocity: i.e.,

vN = 0,(2.5)

where vN is the normal velocity. Two additional boundary conditions come from
Coulomb’s law of sliding friction. The surface traction τ—i.e., the force exerted by
the wall on the material—is given by

τi =
3∑

j=1

TijNj ,

where N is the unit interior normal to ∂Ω. If the vector τ has normal component τN

and tangential component τT = τ − τNN , then we require that

τT = −µw τN (v/|v|),(2.6)
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where µw is the coefficient of friction between the wall and the material. Note that:
(i) If T is positive definite (i.e., if all stresses are compressive), then τN > 0. (ii) While
τN is a scalar, τT is effectively a two-component vector; thus, (2.6) is equivalent to
two scalar equations. (iii) Because of (2.5), the velocity v is tangential to ∂Ω; we are
assuming that v 6= 0 at the boundary.

2.2. Jenike’s similarity solution. Suppose that the domain (2.4) is axisym-
metric: i.e., suppose

Ω = {(r, θ, φ) : 0 ≤ θ < θw},(2.7)

where θw is a constant. In this case Jenike [8] found that (2.1–2.3) have solutions that
are independent of φ and have a similarity dependence on r,

v(0)(r, θ) = r−2 v̂(0)(θ), T (0)(r, θ) = r T̂ (0)(θ).

(Here and below, a hat above a variable indicates a function that depends on θ alone.)
Moreover, only the radial component of velocity is nonzero: i.e., v

(0)
θ = v

(0)
φ = 0.

Similarly T
(0)
rφ = T

(0)
θφ = 0. Indeed all components of T can be expressed in terms of

two scalar variables, the so-called Sokolovskii variables [11], the mean stress p(0) =
trT (0) /3 and an angle ψ; specifically,

dev T (0) = s p(0)



− 2√

3
cos 2ψ − sin 2ψ 0

− sin 2ψ 1√
3

cos 2ψ 0
0 0 1√

3
cos 2ψ


 ,(2.8)

where p(0) = rp̂(0) and the function ψ, like p̂(0), depends only on θ.
The boundary conditions (2.5,2.6) may be written more explicitly when Ω is

axisymmetric. Equation (2.5) reduces to

vθ = 0.(2.9)

Let us decompose the vector equation (2.6) into a direction and a magnitude. Re-
garding the direction, the vectors τT and v are parallel if

Trφvφ − Tθφvr = 0.(2.10)

Jenike’s solution satisfies both (2.9) and (2.10) trivially. The two sides of (2.6) have
equal magnitude if

Trθ + µwTθθ = 0.(2.11)

We briefly summarize the construction of Jenike’s solution, referring to [12] for
more details. The ansatz (2.8) arranges that (2.3) holds automatically. On substitu-
tion into (2.1), we obtain a first-order 2× 2 system of ordinary differential equations
for p̂(0) and ψ. This system has a regular singular point at θ = 0, and one boundary
condition comes from requiring that the solution be regular there; the other boundary
condition comes from (2.11). Thus, the stresses are determined as the solution of a
two-point boundary-value problem. (In axial symmetry, the stress equations decouple
from the velocity.) Once the stresses are known, (2.2) reduces to a linear first-order
ODE for v̂

(0)
r . The velocity is determined only up to a multiplicative constant, but

the normalization of the velocity will scale out of the calculations below.
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Incidentally, for Jenike’s solution the plasticity coefficient λ in (2.2), which cancels
out in the derivation of the equation for v̂

(0)
r , has the form

λ(0)(r, θ) = r−4λ̂(0)(θ).

Using (2.2), the function λ̂(0) may be determined from v̂
(0)
r .

3. Linearized analysis for a nearly axisymmetric domain.

3.1. Derivation of linearized differential equations. Equations (2.1–2.3),
a 10× 10 nonlinear DAE system that is elliptic in the sense of Agmon, Douglis, and
Nirenberg [1], present formidable mathematical and numerical challenges. In this
paper, we consider a simplified problem that exhibits some astonishing behavior of,
and prepares the way for computations with, the full problem on a general domain.

Suppose the function C specifying the boundary of Ω in (2.4) has the expansion

C(φ) = θw + ε cos(mφ) +O(ε2)(3.1)

where m is a positive integer. For example, a slightly tilted (circular) cone admits
such a representation with m = 1, where ε measures the angle of tilt; likewise for a
(vertical) pyramidal hopper having a slightly elliptical cross section, with m = 2.

An expansion of the solution

v = v(0) + εv(1) +O(ε2), T = T (0) + εT (1) +O(ε2)(3.2)

is sought, where v(0), T (0) are equal to Jenike’s radial solution [8]. Substituting (3.2)
into (2.1–2.3), we derive the equations for the first-order perturbation

∇ · T (1) = 0,(3.3)
V (1) = λ(1) devT (0) + λ(0)devT (1),(3.4)

tr(devT (0) devT (1)) = 2 s2 p(0)p(1)(3.5)

where p(i) = tr T (i)/3, i = 0, 1 are the mean stresses.
The correction velocity v(1) has the same r-dependence as the Jenike solution

[8] (although all three components of v(1) are nonzero), and its φ-dependence can be
obtained through separation of variables. Indeed, suppose each component of v(1) has
the form

v
(1)
j = r−2 v̂

(1)
j (θ) trig mφ(3.6)

where trig mφ denotes either cos mφ or sin mφ. In order to satisfy the appropriately
modified version of the boundary condition (2.9) on the perturbed domain, v

(1)
θ will

have to be in phase with (3.1): i.e., we need

v
(1)
θ = r−2 v̂

(1)
θ (θ) cos mφ.

It is readily seen that if

v(1)
r = r−2 v̂(1)

r (θ) cos mφ and v
(1)
φ = r−2 v̂

(1)
φ (θ) sin mφ,

then all terms in

∇ · v(1) = ∂rv
(1)
r + 2r−1v(1)

r + r−1∂θv
(1)
θ + r−1 cot θv

(1)
θ + r−1 csc θ∂φv

(1)
φ(3.7)
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Scalars: p = r p̂(θ) cos mφ

Vectors: v = 1
r2

24 v̂r(θ) cos mφ
v̂θ(θ) cos mφ
v̂φ(θ) sin mφ

35 Tensors: T = r

266666664
T̂rr(θ) cos mφ

T̂rθ(θ) cos mφ

T̂θθ(θ) cos mφ

T̂rφ(θ) sin mφ

T̂θφ(θ) sin mφ

T̂φφ(θ) cos mφ

377777775
Table 3.1

The r- and φ-dependence of scalars, vectors, and tensors in separation of variables

are proportional to r−3 cosmφ: i.e., variables separate in the equation ∇ · v = 0.
Tables 3.1–3.3 help systematize the elimination of φ-dependence in (3.3–3.5) with

separation of variables. The appropriate r- and φ-dependence for the scalar p(1), for
the vector v(1), and for the tensor T (1) is indicated in Table 3.1. (Note that symmetric
3× 3 tensors are represented as vectors in R6, the components being enumerated in
the order shown.) In Table 3.2 we record, for the reader’s convenience, the expressions
in spherical coordinates for four differential operators that occur in these equations.

∇p = [ ∂rp, r−1∂θp, r−1 csc θ∂φp ]T

∇ · v = ∂rvr + 2r−1vr + r−1∂θvθ + r−1 cot θvθ + r−1 csc θ∂φvφ

V =

26666664
Vrr

Vrθ

Vθθ

Vrφ

Vθφ

Vφφ

37777775 = −

26666664
∂rvr

1
2

�
r−1∂θvr − r−1vθ + ∂rvθ

�
r−1 (vr + ∂θvθ)

1
2

�
r−1 csc θ ∂φvr − r−1vφ + ∂rvφ

�
1
2
r−1 (∂θvφ − cot θ vφ + csc θ∂φvθ)
r−1 (vr + cot θ vθ + csc θ ∂φvφ)

37777775
∇ · T =

24 ∂rTrr + r−1 csc θ ∂φTrφ + r−1∂θTrθ + r−1(2Trr − Tφφ − Tθθ + Trθ cot θ)
∂rTrθ + r−1 csc θ ∂φTθφ + r−1∂θTθθ + r−1 (3Trθ + (Tθθ − Tφφ) cot θ)

∂rTrφ + r−1 csc θ ∂φTφφ + r−1∂θTθφ + r−1(3Trφ + 2Tθφ cot θ)

35
Table 3.2

Differential operators in spherical coordinates

The main point, which makes separation of variables work in this problem, is that
the θ-dependent part of each of these linear operators is given by

(a) ∇̂p = (g1∂θ + g0)p̂
(b) ∇̂ · v = (dT

1 ∂θ + dT
0 )v̂

(c) V̂ = −(G1∂θ + G0)v̂
(d) ∇̂ · T = (D1∂θ + D0)T̂

(3.8)

where g1, g0, . . . , D0 are the matrices given in Table 3.3.
The calculation needed to verify (3.8b) was described above; the other equations

may be verified similarly. Incidentally, (3.8a) may be derived by substituting T = pI
in (3.8d), and (3.8b) may be derived by taking the trace of (3.8c).
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g1 =
�

0 1 0
�T

g0 =
�

1 0 m
sin θ

�T
d1 =

�
0 1 0

�T
d0 =

�
0 cot θ m

sin θ

�T

G1 =

26666664
0 0 0

1/2 0 0
0 1 0
0 0 0
0 0 1/2
0 0 0

37777775 G0 =

26666664
−2 0 0
0 −3/2 0
1 0 0

− m
2 sin θ

0 −3/2
0 − m

2 sin θ
− cot θ

2

1 cot θ m
sin θ

37777775
D1 =

24 0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0

35 D0 =

24 3 cot θ −1 m
sin θ

0 −1
0 4 cot θ 0 m

sin θ
− cot θ

0 0 0 4 2 cot θ − m
sin θ

35
Table 3.3

Matrices in (3.8)

With this notation, (3.3–3.5) reduces to a system of ODEs in θ,

(D1∂θ + D0)T̂ (1) = 0,(3.9)

−(G1∂θ + G0)v̂(1) = λ̂(1) devT̂ (0) + λ̂(0)devT̂ (1),(3.10)
tr(devT̂ (0) devT̂ (1)) = 2 s2 p̂(0)p̂(1).(3.11)

Recalling the representation of symmetric tensors as 6-component vectors, we observe
that the LHS of (3.11) may be rewritten as an inner product

tr
(
devT̂ (0) devT̂ (1)

)
= devT̂ (0)TM devT̂ (1)

where M is the 6× 6 matrix

M = diag(1, 2, 1, 2, 2, 1);

thus, we may rewrite (3.11) as

devT̂ (0)TMdevT̂ (1) = 2 s2 p̂(0)p̂(1).(3.12)

Let us show that the deviatoric stresses in (3.9,3.10,3.12) can be eliminated from
these equations to obtain

(D1∂θ + D0)

(
− 1

λ̂(0)
(G1∂θ + G0)v̂(1) − λ̂(1)

(λ̂(0))2
V̂ (0)

)
+ (g1∂θ + g0)p̂(1) = 0(3.13)

(dT
1 ∂θ + dT

0 )v̂(1) = 0(3.14)

where in (3.13)

λ̂(1) = − 1
2s2

1

(p̂(0))2λ̂(0)
V̂ (0)TM(G1∂θ + G0)v̂(1) − λ̂(0)

p̂(0)
p̂(1).(3.15)
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Equation (3.14) follows on taking the trace of (3.10). Next, we rewrite (3.10) as

devT̂ (1) = − 1

λ̂(0)
(G1∂θ + G0)v̂(1) − λ̂(1)

(λ̂(0))2
V̂ (0)(3.16)

where we have eliminated devT̂ (0) using the relation V̂ (0) = λ̂(0)devT̂ (0)—effectively,
equation (2.2) for Jenike’s solution. Recalling that T̂ (1) = devT̂ (1) + p̂(1)I, we substi-
tute (3.16) into (3.9) to derive (3.13). Similarly, (3.15) follows on substituting (3.16)
into (3.12) and rearranging.

As a final simplification, we substitute (3.15) into (3.13), obtaining the linear,
homogeneous system of ODEs

−(A2∂θθ + A1∂θ + A0)v̂(1) + (b1∂θ + b0)p̂(1) = 0(3.17)
(dT

1 ∂θ + dT
0 )v̂(1) = 0(3.18)

where, with the definition

P = I − 1

2s2(p̂(0))2(λ̂(0))2
V̂ (0)V̂ (0)TM,

the coefficient matrices are given by

A2 =
1

λ̂(0)
D1PG1

A1 =
1

λ̂(0)
(D0PG1 + D1PG0) + D1∂θ

(
1

λ̂(0)
PG1

)

A0 =
1

λ̂(0)
D0PG0 + D1∂θ

(
1

λ̂(0)
PG0

)

b1 = g1 + D1
V̂ (0)

p̂(0)λ̂(0)

b0 = g0 + (D1∂θ + D0)
V̂ (0)

p̂(0)λ̂(0)
.

These matrices depend on θ and in fact are singular as θ → 0. In Corollary 4.2 below,
we show that this system has a six-dimensional solution space.

The combination 1/(p̂(0)λ̂(0))V̂ (0), which occurs in various places in the above for-
mulas, admits a convenient representation: i.e., combining (2.2) and (2.8) we deduce
that

1

p̂(0)λ̂(0)
V̂ (0) = s




− 2√
3

cos 2ψ

− sin 2ψ
1√
3

cos 2ψ

0
0

1√
3

cos 2ψ




(3.19)

The following supplementary information will be needed in Section 4.
Lemma 3.1. Under the reflection θ 7→ −θ, the functions in separation of variables

have the parities

(a) p̂(−θ) = (−1)mp̂(θ), (b) v̂
(1)
r (−θ) = (−1)mv̂

(1)
r (θ)

(c) v̂
(1)
θ (−θ) = (−1)m+1v̂

(1)
θ (θ), (d) v̂

(1)
φ (−θ) = (−1)m+1v̂

(1)
φ (θ).

(3.20)
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A2(θ) =

24 1
2

0 0
0 5

6
0

0 0 1
2

35+O(θ)

A1(θ) = θ−1

24 1
2

0 0
0 5

6
m
3

0 −m
3

1
2

35+O(1)

A0(θ) = θ−2

264 −m2

2
0 0

0 −m2

2
− 5

6
− 4m

3

0 − 4m
3

− 5m2

6
− 1

2

375+O(θ−1)

b1(θ) = (1 + s/
√

3)
�

0 1 0
�T

+O(θ)

b0(θ) = θ−1(1 + s/
√

3)
�

0 0 −m
�T

+O(1)

d1(θ) =
�

0 1 0
�T

(exactly)

d0(θ) = θ−1
�

0 1 m
�T

+O(1)

Table 3.4
Leading-orders in the expansions at θ = 0 of the coefficient matrices of (3.17–3.18)

Proof. The reflection θ 7→ −θ and the rotation φ 7→ φ + π are different represen-
tations of the same mapping. Therefore, since p is a scalar

p̂(−θ) cos mφ = p̂(θ) cos m(φ + π) = (−1)mp̂(θ) cos mφ,

which proves (3.20a). Equation (3.20b) follows from the same argument since vr

transforms as a scalar under changes in the angular coordinates. Rather than analyze
the parities of vθ and vφ, we prefer an indirect argument. Since ∇ · v(1) is a scalar,
∇ · v(1) has parity (−1)m under the reflection θ 7→ −θ, and on inspecting (3.7), we
deduce (3.20c,d).

Incidentally, although we shall not need that information below, we remark that
under this reflection T̂rr, T̂θθ, T̂θφ, and T̂φφ have parity (−1)m while T̂rθ and T̂φr have
parity (−1)m+1.

3.2. Boundary conditions at the centerline. Equations (3.17,3.18) have a
regular singular point at θ = 0. The leading orders of the coefficient matrices in
these equations are given in Table 3.4. This information may be determined without
knowing the Jenike solution explicitly since, using the fact that ψ(0) = 0, we deduce
from (3.19) that

V̂ (0)

p̂(0)λ̂(0)
(0) =

s√
3

[ −2 0 1 0 0 1
]T

.

According to the method of Frobenius [3], equations (3.17,3.18) admit solutions
of the form

v̂(1)(θ) = θνF (θ), p̂(1)(θ) = θν−1f(θ)(3.21)
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where F (θ) and f(θ) are analytic near θ = 0. Suppose the exponent ν is real; if 1 ≤ ν
such a solution is continuous, if ν < 0 it is singular, and if 0 ≤ ν < 1 it is continuous
provided f(0) = 0.

Proposition 3.2. There are exactly three linearly independent solutions of
(3.17,3.18) of the form (3.21) that are continuous at θ = 0.

Proof. Substitution of (3.21) into (3.17,3.18) gives an indicial equation with roots

ν = ±(m + 1),±m,±(m− 1).(3.22)

First suppose m ≥ 2. Since three of the roots (3.22) are negative, there are at
most three continuous solutions. However, because the positive roots differ by inte-
gers, these roots might produce fewer than three continuous solutions: the solutions
corresponding to the exponents ν = m or ν = m − 1 might contain log terms. Nev-
ertheless, using Maple we have verified that this possibility does not arise—all three
values of ν produce continuous solutions.

If m = 1, there are four nonnegative roots (3.22), with zero being a double root.
Again using Maple we have eliminated the various alternative possibilities to show
that there are, in fact, exactly three linearly independent continuous solutions. See
Section 5.3 for more details about the Maple code.

Incidentally, since the roots of the indicial equation are integers, the continuous
solutions of the lemma are actually analytic near θ = 0.

As noted above, we prove in Corollary 4.2 that equations (3.17,3.18) have a six-
dimensional solution space. (This fact also emerges in the Maple computation.) Thus,
the condition that solutions be regular at θ = 0 is equivalent to three boundary
conditions. Therefore, regularity at θ = 0 plus the three boundary conditions (2.5,2.6)
will provide a complete set of boundary conditions.

3.3. Boundary conditions at the hopper wall. We derive the perturbed
version of (2.5) in some detail; similar issues arise for (2.6), and we treat the latter
equation more succinctly. The calculations are greatly simplified by the fact that we
may neglect any quantity that is O(ε2). To exploit this simplification efficiently, we
temporarily use the notation F ∼ G to mean that F = G +O(ε2).

Including a prefactor of r2 to remove all r-dependence from the equation, we may
rewrite (2.5) as

r2v(r, θw + ε cos mφ, φ) ·N = 0.(3.23)

Because of the perturbation, (3.23) differs from (2.9) in three respects:
– the velocity v contains an additional term, v ∼ v(0) + εv(1);
– the velocity is evaluated at a location shifted by ε cos mφ, and
– the direction of the normal N is changed.

Regarding the first two points, we observe that

r2v(r, θw + ε cos mφ, φ) ∼ v̂(0)(θw) + ε cosmφ∂θv̂
(0)(θw) + ε trig mφ v̂(1)(θw)

where trig mφ equals cos mφ or sin mφ, depending on the component of v̂(1). Regard-
ing the third point, ∂Ω is the zero set of the function θ − θw − ε cosmφ. Taking the
gradient of this function, we conclude that the (inward) normal is

N ∼
[

0 −1 −ε sin mφ
sin θw

]T

.
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Modulo an O(ε2)-error, N has unit length. Substituting the previous two equations
into (3.23), we deduce that

−r2v(r, θw + ε cosmφ, φ) ·N ∼ v̂
(0)
θ (θw) + ε cos mφ

(
∂θv̂

(0)
θ (θw) + v̂

(1)
θ (θw)

)

+ ε
sin mφ

sin θw
v̂
(0)
φ (θw).

However, since v
(0)
θ and v

(0)
φ vanish identically for Jenike’s solution, the velocity bound-

ary condition for the perturbed problem reduces to

v̂
(1)
θ (θw) = 0.(3.24)

We turn to the stress boundary condition (2.6). As regards the scalar τN in (2.6),
we observe that, since T

(0)
rφ and T

(0)
θφ vanish for Jenike’s solution,

τN =
3∑

i,j=1

TijNiNj ∼ T
(0)
θθ + εT

(1)
θθ .(3.25)

The vectors τT and vT in (2.6) lie in a two-dimensional subspace tangent to ∂Ω. Note
that the unperturbed tangent space is spanned by the r and φ coordinate directions.
Even allowing for the perturbation, the two sides of (2.6) will be equal iff their r- and
φ-components are equal; in symbols, iff

[
τTr

τTφ

]
= −µwτN

|v|
[

vr

vφ

]
.

This equality will hold iff (i) the two sides of the equation are parallel vectors and
(ii) the first components of the two sides are equal; again, in symbols, iff

τTrvφ − τTφvr = 0 and(3.26)
τTr + µwτN (vr/|v|) = 0.(3.27)

Regarding v, it is clear that

[
vr

vφ

]
∼

[
v
(0)
r

0

]
+ ε

[
v
(1)
r

v
(1)
φ

]
.(3.28)

Regarding τT = τ − τNN , we claim that

[
τTr

τTφ

]
∼ −

[
T

(0)
rθ

0

]
− ε

[
T

(1)
rθ

T
(1)
θφ

]
.(3.29)

Verifying this claim is straightforward except that, in analyzing the second component,
one must invoke the fact that Jenike’s solution satisfies T

(0)
θθ = T

(0)
φφ . On substituting

(3.28) and (3.29) into (3.26), we obtain the equation

ε
(
T

(0)
rθ v

(1)
φ − v(0)

r T
(1)
θφ

)
= 0 at θ = θw + ε cos mφ.

The difference between evaluating this expression at θ = θw and at the perturbed lo-
cation is O(ε2). Removing the r-dependence (proportional to r) and the φ-dependence
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(proportional to sin mφ) from this equation, we obtain the first stress boundary con-
dition for the perturbed problem:

(
T̂

(0)
rθ v̂

(1)
φ − v̂(0)

r T̂
(1)
θφ

)
= 0 at θ = θw.(3.30)

Regarding (3.27), we claim that

|v| =
√

v2
r + v2

θ + v2
φ ∼ |vr|.

Indeed, it is clear from (3.28) that the contribution of vφ to |v| is O(ε2), and by (3.24)
the contribution of vθ to |v| is O(ε4). Thus, vr/|v| ∼ −1. Substituting (3.25) and
(3.29) into (3.27), we obtain the condition

(T (0)
rθ + εT

(1)
rθ ) + µw(T (0)

θθ + εT
(1)
θθ ) ∼ 0 at θ = θw + ε cos mφ.

By (2.11), T
(0)
rθ + µwT

(0)
θθ vanishes at θ = θw, but at the perturbed location these

terms make an O(ε)-contribution. Allowing for this contribution and eliminating the
r- and φ-dependence, we derive the second stress boundary condition for the perturbed
problem:

T̂
(1)
rθ + µwT̂

(1)
θθ = −∂θ

(
T̂

(0)
rθ + µwT̂

(0)
θθ

)
at θ = θw.(3.31)

We have put the inhomogeneous term, which does not involve the perturbation T (1),
on the right side of the equation. (By contrast, (3.30) and (3.24) are homogeneous.)

It is noteworthy that the perturbed boundary conditions (3.30, 3.31) resemble
(2.10, 2.11) rather closely.

4. Numerical approximation of the 2-point BVP. The coefficients in (3.17,
3.18) depend on the zeroth-order solution discussed in Section 2.2. This solution can
be found numerically without difficulty, see e.g. [7] where a shooting method is used
or [11]. We will consider the zeroth-order solution as given, and we will focus on the
corrections v̂(1) and p̂(1).

To simplify the notation before discretization, we set

w = v̂(1), z =
d

dθ
v̂(1) and q = p(1)

and rewrite equations (3.17, 3.18) as a first-order system



I 0 0
0 −A2 b1

0 0 0







w′

z′

q′


 +




0 −I 0
−A0 −A1 b0

dT
0 dT

1 0







w
z
q


 =




0
0
0


 ,(4.1)

where the coefficient matrices are the same as above. The system (4.1) is completed
by the three boundary conditions (3.24, 3.30, 3.31).

The above system (4.1) is differential-algebraic; in the next lemma we show it
has index one. (The meaning of this term is defined in the proof, or see [4].) The
approximation of solutions of the initial-value problem for such low-index DAEs is
relatively well-understood; see for instance [4] for convergence results. Moreover, some
results for the initial-value problem may be extended to boundary-value problems, see
[5]. These considerations provide a theoretical justification for our using the midpoint
rule to solve (4.1) numerically.
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Lemma 4.1. Assuming downward flow, i.e., vr(θ) < 0 for any θ, the first-order
system is differential-algebraic of index one.

Proof. We need to show that by differentiating some of the components of (4.1) at
most once, the algebraic character of the system can be eliminated, leaving a purely
differential equation. Let us differentiate only the last component of (4.1),

dT
0 w + dT

1 z = 0.(4.2)

The resulting system may be written



I 0 0
0 −A2 b1

0 dT
1 0







w′

z′

q′


 +




linear
zeroth-order

terms


 = 0.(4.3)

We claim the coefficient matrix in (4.3) is nonsingular. Then, multiplying (4.3) by
the inverse of this matrix, we obtain a purely differential equation.

To prove the claim, it suffices to show that

B =
[

+λ̂(0)A2 b1

dT
1 0

]
(4.4)

is nonsingular, where, without changing invertibility we have inserted a factor of −λ̂(0)

in the upper left, which simplifies the calculation. Let us introduce the notation W
for the column vector on the RHS of (3.19), so that 1/(p̂(0)λ̂(0))V̂ (0) = sW . Then
from the definitions following (3.17,3.18), we have b1 = g1+D1W. Similarly, regarding
A2, since MG1 = DT

1 , we have λ̂(0)A2 = D1G1 − 1
2 (D1W )(D1W )T . But

D1W =
[
− sin 2ψ 1√

3
cos 2ψ 0

]T

.

Hence the matrix (4.4) equals

B =




1
2 − 1

2 sin2 2ψ ∗ ∗ −s sin 2ψ
1

2
√

3
cos 2ψ sin 2ψ ∗ ∗ 1 + s√

3
cos 2ψ

0 0 1
2 0

0 1 0 0




where ∗ indicates elements that do not affect the invertibility of B. It is readily
calculated that

detB = −1
4

(
cos2 2ψ +

s√
3

cos 2ψ

)
.

As shown on p.43 of [12], the assumption that v
(0)
r < 0 implies that |ψ(θ)| < π/4, and

the claim follows.
Corollary 4.2. The solution space of (4.1) has dimension six.
Proof. The solution space of (4.3), which is seven dimensional, may be param-

eterized by initial values
[

w(θ0) z(θ0) q(θ0)
]T . Since (4.3) was obtained from

(4.1) by differentiating (4.2), we conclude that for a solution of (4.3),

dT
0 w(θ) + dT

1 z(θ) ≡ 0 if and only if dT
0 w(θ0) + dT

1 z(θ0) = 0.
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Thus the solution space of (4.1) may be identified with the set of solutions of (4.3)
whose initial conditions satisfy the scalar equation (4.2).

The boundary value problem (4.1), (3.24, 3.30, 3.31) is discretized using a sym-
metric implicit Runge-Kutta method [2], [4]. Since the solutions are expected to
behave smoothly with respect to θ, the simplest of those methods, namely the mid-
point rule, is chosen. In spite of being only second order accurate, this choice is
shown to be adequate below. The interval (0, θw) is divided in N subintervals of size
∆θ = θw/N , defining a uniform mesh with nodes θi = i ∆θ, i = 0, 1, . . . , N . At each
grid point θi there are seven unknowns,

U i = [wi
1 wi

2 wi
3 zi

1 zi
2 zi

3 qi]T .

Since there are N +1 grid points, there are 7(N +1) unknowns in total. The midpoint
rule for the ODE (4.1) is applied on each interval [θi−1, θi], i = 1, . . . , N , leading to
7N equations for the 7(N + 1) unknowns.

Seven additional equations are needed to close the system, and these are provided
by the boundary conditions. At θ = θw, the three conditions (3.24, 3.30, 3.31) are
imposed; and at θ = 0, the four numerical boundary conditions listed in Table 4.1 are
imposed. The latter boundary conditions may be justified as follows. According to
(3.21,3.22), as θ → 0,

w ∼ θν , q ∼ θν−1,

where ν ≥ m− 1. Thus w(0) = 0 if m ≥ 2, and q(0) = 0 if m ≥ 3. In fact, if m = 2,
direct calculation of the Frobenius solution (3.21) shows that q(0) = 0 remains true
in this case too. If m = 1, we refer to Lemma 3.1: by parity, w1, q, and z3 = dw3/dθ
all vanish at θ = 0. The fourth boundary condition in Table 4.1 follows from the last
equation in (4.1) in the limit θ → 0.

m = 1 w0
1 = 0 w0

2 + w0
3 = 0 z0

3 = 0 q0 = 0
m ≥ 2 w0

1 = 0 w0
2 = 0 w0

3 = 0 q0 = 0

Table 4.1
Numerical boundary conditions at θ = 0.

The resulting 7(N + 1)× 7(N + 1) system has the following structure




S1 R1

S2 R2

. . . . . .
SN RN

B0 Bw







U0

U1

...
UN−1

UN




=




0
0
...
0
Q




(4.5)

The last row of the above system corresponds to the implementation of the boundary
conditions; the 7 × 7 matrices B0 and Bw contain the coefficients entering in the
formula from Table 4.1 and (3.24, 3.30, 3.31) respectively, while Q corresponds to the
nonhomogeneous part of the boundary condition (3.31).
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Fig. 5.1. Stream function showing secondary flow in a tilted hopper (m = 1, θw = 30◦,
δ = 30◦); top: angle of wall friction = 15◦ (µw = tan 15◦), bottom: angle of wall friction = 23.3◦
(µw = tan 23.3◦). By symmetry, only half of the hopper is represented.

5. Numerical results.

5.1. Secondary circulation. We claim that, for solutions of (4.1), secondary
circulation—i.e., flow tangential to the spherical cap {r = const}—may be described
in terms of the stream function

Ψ =
1

mr
sin θ sin mφw2(θ).

In other words, we must show that

(a) v
(1)
θ =

1
r sin θ

∂φΨ, (b) v
(1)
φ = −1

r
∂θΨ.(5.1)

Since v
(1)
θ = r−2w2(θ) cos mφ, equation (5.1a) follows by direct differentiation. On

the other hand, since v
(1)
r = r−2w1(θ) cos mφ, we have (∂r + 2r−1)vr = 0, so by (3.7)

(∂θ + cot θ)w2(θ) cos mφ + csc θ w3(θ) ∂φ(sinmφ) = 0,

from which (5.1b) follows.
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Fig. 5.2. Stream function showing secondary flow in an “elliptical” (m = 2, θw = 30◦, δ =
30◦); top: angle of wall friction = 15◦ (µw = tan 15◦), bottom: angle of wall friction = 23.3◦
(µw = tan 23.3◦).

Figures 5.1 and 5.2 show plots of the level lines of Ψ, which equal the projection
of the streamlines onto a spherical cap {r = const}. Figure 5.1 corresponds to a tilted
hopper (m = 1), while Figure 5.2 corresponds to an “elliptical” hopper (m = 2).
In both cases, two different values of the wall friction are presented, while the other
parameters are held constant. The grains do not move along radial lines but follow
more complicated and fully three-dimensional trajectories. One can observe from
Figures 5.1 and 5.2 that the sign of the main circulation changes when µw increases.
In the case m = 1, this is even accompanied by a change in the topology of the
flow—i.e., the addition of a vortex.

As µw varies between the values shown in the Figures, the flows do not undergo
a smooth transition from one case to the other. This is demonstrated in Figure 5.3
which shows, for values of m from 1 to 4, the azimuthal velocity v̂

(1)
φ (θw) on the wall

as a function of the wall friction µw. For each value of m, v̂
(1)
φ suffers a “1/x-blowup”

as µw passes through a critical value.
As µw crosses the critical values in Figure 5.3, the direction of the circulation

changes in a singular way. It turns out that there are also additional critical parameter
values for which the sign of the circulation changes smoothly, passing continuously
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Fig. 5.3. Dependence of the resonance on the geometry of the domain through the coefficient

m: blowup of v̂
(1)
φ (θw) as a function of the wall friction µw (internal friction δ = 30◦, half opening

angle θw = 30◦).

through zero. For the case m = 1 and δ = 30◦, curves of θw, µw along which the
circulation changes sign by either mechanism are shown in Figure 5.4. Note that
the smooth-transition curve does not depend on the value of m, but is a property
of the radial solution itself. Specifically, the circulation vanishes when the boundary
condition for the correction terms (3.31) is homogeneous, i.e., ∂θT̂

(0)
rθ + µw∂θT̂

(0)
θθ = 0

at θ = θw. The range of θw in Figure 5.4 is limited by the mass-flow limit—exceeding
this limit leads to flows with rigid regions, to which the present model does not apply.
The range of µw is limited by the condition that µw < sin δ = 1/2; here the upper
bound corresponds to a fully rough wall [8].

Figure 5.5 offers a three-dimensional view of which combinations of the parameters
δ, µw and θw lead to blowup. Another surface of critical values corresponds to the
above mentioned smooth transitions. In Figure 5.5, the curve of intersection between
those two critical surfaces is also represented.

5.2. Relation to bifurcation theory. While the blowup in the correction so-
lution could not have been anticipated, its cause is easily understood a posteriori. The
two-point boundary problem for v̂(1), T̂ (1) has inhomogeneous boundary conditions,
but at the singular point, the problem with the corresponding homogeneous boundary
condition

T̂
(1)
rθ + µwT̂

(1)
θθ = 0 at θ = θw(5.2)

has a nonzero solution. This behavior is analogous to that of a forced harmonic
oscillator

ẍ + ω2
0x = A sin ωt.

The steady state oscillations have amplitude A/(ω2
0 − ω2) which diverges as ω passes

through the natural frequency ω0 of the oscillator. Unlike the above problem, in our
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Fig. 5.5. Locus of parameters for which blowup of v̂(1) occurs (m = 1.) The dark curve
represents the intersection of this surface with the locus of parameters for which the flow changes
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model the inhomogeneity is in a boundary condition rather than the equation.
These remarks suggest a connection with bifurcation theory. Consider equations

(2.1–2.3) on the conical domain {0 ≤ θ < θw} subject to boundary conditions (2.9–
2.11). Let us write W = [v, T, λ]T as a multicomponent unknown, and from the three
parameters δ, µw, θw let us consider µw as a distinguished (bifurcation) parameter.
We rewrite (2.1–2.3), (2.9–2.11) symbolically as

Φ(W,µw) = 0.(5.3)
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Now for any µw, the Jenike solution W (0) provides one solution of (5.3). We investigate
other possible solutions of this equation with the implicit function theorem. Let L be
the linearization of Φ with respect to its first argument: i.e.,

LW = lim
h→0

h−1

(
Φ(W (0) + hW, µw)− Φ(W (0), µw)

)
.

If L is invertible, then the Jenike solution is the unique solution of (5.3) in some
neighborhood of W (0). Thus, to detect possible bifurcation, we look for values of µw

such that there is a nonzero solution of the equation

LW = 0.(5.4)

Essentially, we have already calculated L. In linearizing the PDEs (2.1–2.3) we
obtain (3.3–3.5). In linearizing boundary conditions, (2.9) becomes (3.24); (2.10) be-
comes (3.30); and, because the location of the boundary is not moved, (2.11) becomes
not (3.31) but (5.2). By the above analysis, (5.4) has a nonzero solution precisely
when µw equals a critical value at which the correction solution blows up.

In light of bifurcation theory [6], these observations lead us to make the follow-
ing conjecture: Even in a conical domain, there are solutions of (5.3) with nonzero
circulation. These bifurcate from the Jenike solution where µw equals a critical value.
We shall explore this conjecture in a future publication.

5.3. Checks on the computation. For comparison with the above numerical
solution, the method of Frobenius was applied directly to the system (3.17,3.18) using
Maple. Given Jenike’s radial field, a linear system for the coefficients of the series
solution is readily formed and solved, yielding a solution with three free parameters,
corresponding to the three linearly independent solutions in Proposition 3.2. Subse-
quently, the three boundary conditions (3.24,3.30,3.31) provide the needed relations
to determine the solution to the full boundary value problem.

Two methods of obtaining the radial field were employed. Under the assumption
that θ2

w and µw/θw are both small and of the same order, a series representation of the
Jenike field was computed within Maple itself. Under the less restrictive assumption
that only θw be small (say 10◦), numerical solutions were computed in MATLAB,
fitted to polynomials, and then imported into Maple. In both cases, the resulting
polynomials were then used to compute the first order correction. The corrections
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Fig. 5.6. Comparison of v
(1)
θ from the purely numerical method of Section 4 and from the

Frobenius method of Section 5.3. (Using m = 1, θw = 10◦, δ = 30◦, and µw = 0.3.)
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to the stress and velocity obtained through this symbolic approach agree extremely
well with the results of the purely numerical method of Sections 4 and 5: for the
representative values θw = 10◦, δ = 30◦, and µw = 0.3 the corrections obtained by
the two different methods have a relative difference of less than 1%. Furthermore,
with θw = 10◦ and δ = 30◦ the corrections obtained via Maple exhibited the familiar
“1/x-blowup” near µw = 0.4605. For comparison, in the purely numerical approach,
at the same values of δ and θw, blowup occurred for µw = 0.4610.
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